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Abstract

Automated images-based species identification has a high potential to support bio-

diversity data collection, especially as the number of collected records increased con-

siderably in recent years. In this study, a pre-trained convolutional neural network

(ResNet-152) was tuned to classify butterfly and moth species based on images and

its performance was assessed. The dataset used for training was collected by citizen

scientists with the application ”Schmetterlinge Österreichs”. It has over 500,000 im-

ages of 162 species and is considerably larger than datasets in similar studies.There

were large differences on the number of images per species, so I employed and evalu-

ated methods to handle this class imbalance. A high accuracy of 97.1% on testdata

was achieved when not correcting for class imbalance. Models trained with methods

that better represent small classes reached slightly lower accuracies but had higher

mean recall per species (93.2% for oversampling of classes with only few species and

90.9% for the application of a weighted loss function). Species with many training

images could be predicted with high recall and precision, while images from small

classes displayed lower mean values for both recall and precision, as well as higher

variance. Among the species groups that could be identified accurately by the mod-

els are the family Papilionidae and the tribe Nymphalini which contain many species

with characteristic wing patterns. Identification was more difficult for species of the

families Lycanidae and Hesperiidae and the genus Erebia. The achieved accuracy of

the classification was higher than in other studies. It demonstrates the applicability

of deep learning models for species identification which can reduce human effort and

provide reliable feedback to citizen scientist that collect biodiversity data.
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3 Zusammenfassung

Citizen Science Programme zur Beobachtung von Biodiversität liefern weltweite

Daten von Millionen Teilnehmer*innen und leisten einen wichtigen Beitrag zur Bio-

diversitätsforschung. Dabei werden oft große Mengen an Bildern von zu beobach-

tenden Organismen gesammelt. Die Sicherstellung der korrekten Artbestimmung

anhand der Bilder kann einen hohen Arbeitsaufwand bedeuten. Automatisierte

Bestimmungsmethoden können diesen Aufwand verringern und mit Artvorschlägen

zudem zu Verbessung der Artkenntnisse der Nutzer*innen beitragen.

Für die Klassifizierung von Bildern sind ”Convolutional Neural Networks” (CNN)

besonders gut geeignet. In dieser Arbeit wurde das CNN Modell ResNet-152 mit

einem Datensatz der App ”Schmetterlinge Österreichs” der Billa-Stiftung Blühendes

Österreich1 auf die Bestimmung von Schmetterlingen trainiert. Der verwendete

Datensatz umfasst über 500.000 Bilder von Tag- und Nachtfaltern und ist damit

deutlich größer als in ähnlichen Studien bisher verwendete Datensätze [10, 38, 48].

Wie es bei solchen Datensätzen häufig der Fall ist, unterscheidet sich die Anzahl an

Bildern pro Arten stark. Es wurden daher verschiedene Methoden angewandt, um

diese Verteilung beim Trainieren des Modells auszugleichen. Es wurde untersucht,

wie genau einzelne Arten und Artgruppen mit den unterschiedlichen Methoden bes-

timmt werden konnten. Um die mögliche Arbeitseinsparung abschätzen zu können,

wurde analysiert, welcher Anteil der Bilder vom Modell bestimmt werden kann,

wenn eine Genauigkeit von mindestens 99,5% erreicht werden soll.

1https://www.bluehendesoesterreich.at/
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3 Zusammenfassung

Es konnten 97,1% der Bilder korrekt bestimmt werden. Diese hohe Genauigkeit

wurde mit einem Modell ohne Korrektur der ungleichen Verteilung der Daten erre-

icht. Diese Modell war daher besonders stark auf die Arten mit vielen Bildern op-

timiert und hatte die beste Leistung auf dem gesamten Testdatensatz. Ein Ansatz,

bei dem Bilder von kleinen Klassen (Arten mit wenig Bildern) häufiger im Training

verwendet werden, zeigte ebenfalls eine hohe Genauigkeit mit 96,3%. Arten mit

wenig Bildern werden durch diese Methods besser vom Modell repräsentiert. Dies

zeigt sich im höheren Mittelwert der Sensitivität (Recall) über alle Arten, der mit

der Korrektur (93,2%) höher ist als ohne (90,1%). Der Wert gibt an, welcher Anteil

der Bilder einer Art vom Modell auch dieser Art zugeordnet wird.

Die Modelle funktionieren für Arten mit vielen Bildern sehr gut, während die Ergeb-

nisse für Arten mit wenigen Bildern gemischt sind. Die teilweise hohe Fehlerrate

bei Arten mit wenig Bildern könnte zum einen direkt an der geringen Anzahl an

verfügbaren Bildern liegen. Zum anderen kann es sein, dass gerade unaufällige

und schwierig zu bestimmende Arten seltener fotografiert werden. Arten der Fam-

ilie Papilionidae (Ritterfalter) und des Tribus Nymphalini (mit z.B. Aglais urticae

(Kleiner Fuchs) und Vanessa atalanta (Admiral)) konnten besonders gut vom Mod-

ell bestimmt werden. Beide Gruppen enthalten viele auffällige, gut anhand des

Flügelmuster bestimmbare Arten. Arten der Familien Lycaenidae (Bläulinge) und

Hesperiidae (Dickkopffalter) und der Gattung Erebia wurden vom Modell hingegen

weniger oft korrekt bestimmt.

Welche Genauigkeit der Bestimmungen ausreichend ist, hängt von der Anwendung

ab. Die Genauigkeit kann erhöht werden, wenn Bestimmungen mit geringer Sicher-

heit verworfen werden. Für eine korrekte Bestimmung von 99.5% der Bilder, können

ca. 90% der Bilder vom Modell verarbeitet werden. Die restlichen 10% bedürfen

einer zusätzlichen Kontrolle durch Expert*innen. Ist ein Schmetterlinge nur klein

abgebildet oder verdeckt, wird die automatische Bestimmung erschwert. Zudem ist

wichtig, dass Bestimmungsmerkmale erkennbar sind. Entpsrechende Richtlinien für

Nutzer*innen von Apps können die Genauigkeit der Bestimmung zusätzlich erhöhen.
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4 Introduction

The number of image-based species records has increased considerably in recent

years due to the use of automated cameras and the participation of citizen scientists

[5]. While automated cameras provide information about species occurrences at

selected locations, citizen science projects can have a broad spatial coverage with

images of species that are collected by millions of participants from all over the

world [13, 8]. Such data are a valuable source of information on species occurrence

and substantially contribute to biodiversity monitoring and research [9]. Ensuring

high accuracy of species identification from provided images is one of the challenges

of working with biodiversity data sourced from citizen science apps [49]. Due to the

high number of images, the confirmation of species identifications by experts can

be time-consuming and hence expensive. Automated machine learning methods for

species identification from images have potential to reduce this effort and increase

benefits for users of applications for biodiversity data collection. By providing direct

feedback, automated machine learning methods increase the educational value of

such applications and motivate users to add more observations [33].

Machine learning techniques open up new possibilities to extract information from

images and to make use of large image datasets in biodiversity monitoring in a time-

and cost-efficient way [4, 53]. Convolutional Neural Networks (CNNs) are especially

suited for visual recognition tasks such as object detection, semantic segmentation,

and image classification because of their strong feature learning ability [11]. They

have already been used for the identification of different taxa, such as vertebrate
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4 Introduction

species in terrestrial and marine habitats [43, 15, 17], insects [19, 37, 48] and plants

[35, 55]. CNNs are implemented in apps for species identification and recording,

such as Flora incognita [35] or iNaturalist [1]. Although neural networks and other

machine learning methods are already being used in different biological applications,

their potential to facilitate biodiversity data collection is not yet fully explored and

many challenges remain for their successful application [5, 17].

An effective application of CNNs and other machine learning models requires a

large amount of training data [5]. The labeling of a sufficient number of images with

the correct species can require a high initial investment before classification can be

automated [4]. The number of required images depends on the required accuracy

of model predictions and the variability within and between classes. Images of

species in their natural environment are especially challenging because they often

have high variability within a class. This inter-class variability can be the result of

images being taken with diverse backgrounds and lighting situations, from variable

distances and angles and of different parts, developmental stages, or behaviors of an

organism. The between-class variability differs between different taxa and not all

are suited for identification based on images. in particular insects can be challenging

or impossible to identify from morphological features even for experts [34].

Another common challenge with datasets of species records is a high class imbalance:

while some species are common and can be observed and photographed easily, others

are rare, life hidden or are difficult to photograph [29]. Even if a high total number

of images is collected, there might be only few images from minority classes (species

with few images) compared to the majority classes (species with many images). The

low absolute number of images from minority classes is a problem, when there are too

few images for generalization to other images from that class. Data augmentation

can reduce overfitting and improve model performance by increasing the size of

the training dataset. This is achieved by applying different transformations on the

existing images such as geometric transformations (e.g. flipping, rotations, warping),

color space transformations or noise injection [41, 45]. Transfer learning, using a
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4 Introduction

model that was pre-trained on a dataset with similar features, was also shown to

reduce the amount of required training data [54] and to be especially beneficial for

small datasets [56]. In addition, the low relative number of images from minority

classes can also be problematic. Due to the class imbalance, minority classes are

less well represented during training which negatively affects model performance

for those classes [7]. Different techniques were proposed to overcome the problems

that are associated with imbalanced datasets. A more balanced distribution of the

data can be achieved by oversampling the minority classes or by undersampling the

majority classes [7, 30]. Another approach is to apply a weighted loss function, that

assigns a higher penalty to misclassifications from minority classes [44].

Butterflies are a well-suited insect group for the application of automated species

identification from images. In contrast to many other groups of insects, most butter-

flies and many moth species can be distinguished without the assessment of micro-

scopic characteristics and, in many cases, pictures contain the necessary information

for species identification. However, challenges of using butterflies still include highly

similar looking species or species with high intra-specific variability as well as species

that can only be distinguished when a certain side or part of the wing is visible [10].

Butterflies have a positive image [42] and their characteristic wing patterns make

them popular photo motives. In addition, they are a well-studied group that is

often used as a biodiversity indicator due to many favorable characteristics. But-

terflies react sensitively to changes in environmental conditions [6, 52], inhabit a

wide range of terrestrial habitats [52] and are representative for many (but not all)

groups of terrestrial insects [50, 14, 2]. Considering the important role of butter-

flies as biodiversity indicators, the development and assessment of methods for their

automated species identification is highly relevant in times of increasing pressure

on and a consequential decline of biodiversity [25]. In addition, such methods can

increase public knowledge about butterflies and moths and raise awareness for insect

diversity through educational applications.

Various studies have already explored the possibilities of an automatic image-based
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4 Introduction

identification of butterflies using neural networks. Within these studies, different

features including characteristics of wing shape, color and texture were used in

combination with artificial neural networks to identify butterfly species [26, 27, 31].

While being successful in the identification of some species, all these studies have the

drawback that they did not use images from butterflies in their natural environments

but instead standardized pictures of collected and pinned specimen. Besides this,

they worked on relatively small datasets with only few species and therefore, the

transferability and practical use of the proposed methods is limited. CNNs and the

availability of larger datasets has opened new possibilities in the field. CNNs could

correctly predict over 98% of images in a study that included 10 species and 832

images [36]. For larger datasets with more species, accuracies were lower. Chang et

al. [10] reached an accuracy of 0.71 with ResNet18 on a dataset with 14,270 images

of 636 species. Nie et al. [38] reached an accuracy of over 0.95 with a ResNet

model on a dataset with 10,881 images of 82 species and Theivaprakasham et al.

[48] predicted butterfly species with an accuracy of nearly 0.95 based on a dataset

with 34,024 images of 315 species using ResNet-152.

The aim of this thesis was to assess the performance of the convolutional neural net-

work ResNet-152 for the classification of Austrian butterflies and day-active moths.

The model was trained on a dataset collected by Citizen Scientists with the appli-

cation “Schmetterlinge Österreichs”1 of the Billa-Foundation Blühendes Österreich.

With over 500,000 images of 166 butterfly and 32 moth species the dataset is con-

siderably larger than the ones used in other studies. Correct identification of the

images in the dataset was verified by an experienced entomologist. The dataset has

a high class imbalance with over 30,000 images for the most common and only a few

images for rare species.

The following research questions were addressed:

• How high are the top-1, top-3 and top-5 accuracy of the ResNet-152 model

1www.schmetterlingsapp.at
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4 Introduction

that is trained on the above mentioned dataset? (For the top-1 accuracy the

highest probability classification has to be correct, while for the top-3 and

top-5 accuracy the correct class can also be in the three or five classes with

the highest predicted probability.)

• How does overall and per class accuracy differ between a model trained on

the original imbalanced dataset, one trained with over-sampling of minority

classes and one trained with a weighted loss function?

• Which species and species groups can be predicted with high accuracy and

which are difficult to predict?

• With what confidence threshold can an accuracy of 99.5% be provided and

how high is the proportion of images that are predicted with that confidence?
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5 Methods

5.1 Dataset

The original dataset from the butterfly app of the foundation “Blühendes Österreich”

contains 541,677 images of 185 butterfly and moth species. Images were taken by

users of the app between 2016 and 2023 with an unstructured scheme, meaning that

users had no guidelines on where to record species but could freely choose locations.

When recording a species, users uploaded one or multiple images of that species

with the location. All users of the app could suggest a classification (i.e. species

identification) for an image. The correct classification of all images was verified by

a supervising expert from the foundation ”Blühendes Österreich”.

The dataset contains images that show different life stages of butterflies. For all

species except a few moth species, adult life stages were photographed most often.

As the identification of adult butterflies and moths is also the focus of this study,

11,273 images that showed eggs, larvae or pupae and images with more than one

species were excluded. The dataset was reduced to species with at least 50 images

to ensure that enough images remain in the test dataset to evaluate performance for

individual species. The dataset that was finally used in this study contains 529,835

images of 162 species. It contains 131 of the 210 butterfly species [21] and 31 of

the about 4000 moth species that occur in Austria [23]. In the cleaned dataset, the

largest class contains 29,612 images, hence the class imbalance ratio is about 1:150.

108 species had less than 1000 images and 39 species less than 100 images (fig. 5.1).
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5 Methods

Figure 5.1: Distribution of the number of images per species for the dataset with >500,000

images of butterflies and moths that were collected with the application

”Schmetterlinge Österreichs” of the Billa Foundation ”Blühendes Österreich”

between 2016 and 2023

10% of the dataset were randomly selected for testing the models using a stratified

sampling to ensure that the same proportion of images is taken from each class.

The remaining 90% were divided in 80% training and 20% validation data in each

training run, also using a stratified sampling.

5.2 Data augmentation

Data augmentation was applied during training to enhance variability of training

data. Training images were cropped to an area between half and the full area of the

original image, the aspect ratio was randomly changed to a value between 0.8 and

1.2, and the images was resized to 224 x 224 pixels. Images were flipped horizontally

and vertically with a probability of 0.3 for each, distorted with a scale of 0.2 with

a probability of 0.4 and randomly rotated between -50° and 50°. The RGB colour

channels were normalized based on ImageNet with the means 0.485, 0.456, 0.306 and
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5 Methods

standard deviations 0.229, 0.224, 0.225. Images in the validation and test datasets

were resized to 224 pixel at the shorter site, randomly cropped to 224 x 224 pixel

and normalized in the same way as the training data. See fig. 8.5 and fig. 8.6

supplements for randomly selected examples of original and augmented images.

5.3 Model

A ResNet-152 model [20] that was pre-trained on ImageNet [12] was used. The last

layer of the model was adapted to the number of classes in this study. Due to the

large amount of the available training data and their difference to the ImageNet

dataset a full fine-tuning of the pre-trained ResNet-152 model, with all parameters

rendered trainable, was conducted to get the best performance out of the full model.

ResNet is a residual learning network that solves some of the problems connected

to high network depth. Increasing the depth of a neural network can improve net-

work performance but with too many layers performance was observed to decrease

again. This degradation in accuracy is caused by difficulties with the optimization

of large networks [11]. Residual learning networks overcome this limitation with

residual connections (or shortcut connections) that connect activations of a layer

with another layer by skipping layers in between [20]. ResNet models performed

best in different studies that compared model performance for butterfly identifica-

tion [10, 48, 38]. Of these studies, Theivaprakasham et al. [48] were the only ones

to include multiple variants of ResNet and achieved the best performance with the

ResNet-152 based on a dataset with >34,0000 images of 315 species. Among the

compared models were different variants of ResNet [20], DenseNet [22] and VGG

[46]. As the classification tasks are similar, ResNet-152 was also used in this study.
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5.4 Hyper-paramters

The model was trained over 50 epochs (iterations over the whole training dataset)

with a batch size of 128. The batch size defines how many images are processed

before the model parameters are updated and is an important hyper-parameter that

influences model accuracy and efficiency.

Categorical cross entropy loss and the Adam algorithm [28] were used for model

optimization. Adam is a computationally efficient optimizer that is well-suited for

machine learning problems with large datasets and many model parameters [28].

Theivaprakasham et al. [48] compared different optimization algorithms for but-

terfly identification with CNNs and found that Adam converged faster than other

algorithms.

The learning rate was set to 0.0004 at the beginning of training and multiplied

with 0.5 if validation accuracy did not improve for two epochs. The learning rate

controls how much the model parameters are changed based on the loss function.

It strongly affects model performance and can be challenging to choose. Too small

a learning rate can result in slow training while too large a learning rate can lead

to overshooting and lack of convergence [16] (Subchapter 8.3). The learning rate

is reduced during training to allow for faster training in the beginning and better

convergence in later epochs.

5.5 Handling class imbalance

To obtain a balanced representation of the classes during training, two approaches

were applied. In the first approach, minority classes were oversampled and majority

classes undersampled when loading the images for training the model. Each image

was given a weight that is the inverse of the number of images in the class an image

belongs to. In each epoch of training, images are selected with replacement with a

probability that is proportional to their weight and data augmentation is applied
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to each of them prior to using them for training the model. Images from minority

classes are therefore selected more often compared to those from majority classes.

The overall number of selected images in each epoch was the same as the size of

the dataset for comparability with the other approaches. In the second approach, a

weighted loss function was used that applies a higher penalty to misclassifications

of images from minority classes. Weights were again the inverse of the number of

images in the class an image belongs to. The model was also trained using the

original dataset without correction for class imbalance.

5.6 Model evaluation

The performance of the models that were trained with the above mentioned ap-

proaches was assessed based on the test dataset. For each model, the top-1, top-3

and top-5 performance over all images were assessed. The top-1 performance evalu-

ates how often the correct class is the one predicted by the model with the highest

probability. For the top-n accuracy it is evaluated how often the correct class is one

of the n classes with the highest probability. Each predicted image has the same

impact on the accuracy, hence, classes with many images have a stronger influence

on this metric. In addition, precision and recall were calculated for each species and

mean values over all species calculated to assess model performance with a stronger

emphasis on species with few images. Precision assesses how many images that are

predicted to belong to a certain species really belong to that species (true positives

/( true positives + false positives)). Recall which is also called sensitivity assesses

how many of the images that truly belong to a class are predicted to be in that class

(true positives / (true positives + false negatives)).

Precision and recall per species were compared for groups of species to assess whether

some groups can be determined more easily than others. While some butterfly

families contain only few species in Austria (e.g. Riodinidae with only one species

and Papilionidae with seven species) the largest family (Nymphalidae) contains over
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100 species. Groups were therefore built based on different taxonomic levels from

genus to family with the aim to group species with similar characteristics. The

species Hamaeris lucina is the only species in the family Riodinidae and was not

assigned to any group. The number of species per group ranged from 6 to 35 (table

5.1). See figures 8.1 to 8.3 for images of some species of each group.

Table 5.1: Number of species in each of the butterfly groups that were used to assess model

performance

Group Taxonomic Level Number of Species

Lycaenidae family 35

Moth no taxon 31

Satyrinae (without Erebia) subfamily 19

Argynnini tribe 14

Pieridae family 13

Hesperiidae family 13

Nymphalini tribe 9

Melitaeini tribe 8

Limenitidinae and Apaturinae subfamily 7

Erebia genus 6

Papilionidae family 6

It was assessed at what confidence level of the predictions an accuracy of 99.5% can

be reached and what proportion of the images are covered with that threshold.

5.7 Software and high-performance computing

Training on such a large dataset as the one used in this study can take a long

time on one graphics processing unit (GPU), e.g. a consumer GPU on a laptop.

Therefore, high-performance computing (HPC) resources were used. The training

of neural networks is highly parallelizable and even a single GPU is a massively
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parallel processor, consisting of hundreds or thousands of compute cores that share

the workload. An HPC system takes this further and several GPUs can be con-

nected to collaborate simultaneously on solving a problem. In order to accelerate

the training of the model described in this study, a technique called data parallelism

was used. With data parallelism a model is replicated on every used GPU, while

every GPU trains the model on a subset of the data. Every epoch the data gets

shuffled. The initialization of the model on each device is identical and sophisticated

communication patterns between the GPUs ensure that the parameter updates of

the model are constantly synchronized. The PyTorch library was used [40], which

natively comes with a framework called Distributed Data Parallel (DDP) [32]. It

enables data parallel training, with the data distributed among compute devices

such as GPUs. A further layer of abstraction is provided by Hugging Face with its

Accelerate library [18] that makes using PyTorch DDP more straightforward.

A number of proof of concepts of the scaling with data parallelization using DDP

with Accelerate were conducted on LEO5 [57]. LEO5, the latest HPC system in the

LEO series at the University of Innsbruck, contains 54 Nvidia enterprise GPUs of

different kinds. Nvidia A30 GPUs were used – the most common ones on LEO5 –

and showed a significant speedup. The time for an epoch could be reduced from an

initial two hours to twelve minutes going from one to four GPUs. This has been

achieved with additionally increasing the bandwidth of loading data onto the GPUs

by utilizing more compute cores for this task. The speedup can thus not only be

attributed to the higher number of very capable GPUs, but also to the powerful

CPUs (central processing units) that steer and connect the GPUs.

LEO5, however, is not a dedicated GPU, or AI, system, and resources are shared

on a fine-grained level. This can lead to either long waiting times in the queue or

tempt the user to request non-optimal resource allocations. Therefore the EuroHPC

supercomputer LEONARDO [51] was used for training the model on the full dataset.

The supercomputer LEONARDO hosted by CINECA (Italy) and the LEONARDO

consortium and the number 9 in the TOP500 list [47] at the time of writing, has a
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Booster GPU partition equipped with more than 12,000 custom Nvidia A100 GPUs.

It stands out with its high availability and therefore short queuing times and a fast

interconnection of GPUs. For training on LEONARDO 8 GPUs were employed,

with a batch size of 16 processed by each. Since the GPUs work on individual

batches synchronously, the effective total batch size increased to 128. A large batch

size reduces the randomness, or noise, that is crucial to discover lower minima in the

loss landscape via new paths. Choosing too low a batch sizes per GPU, on the other

hand, increases computation times as GPUs have to synchronize more frequently.

5.8 Code and Data Availability

The scripts that were used to run the models on the supercomputer LEONARDO

are available on github:

https://github.com/FriederikeBarkmann/CNN butterfly identification.

The trained models are available on Hugging Face:

https://huggingface.co/RikeB/CNN butterfly identification.

The images that were used for training can be viewed on the homepage of the

butterfly app of Blühendes Österreich: https://schmetterlingsapp.at/.

There are plans to publish the dataset in a more widely usable format.
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6 Results

6.1 Performance of the approaches

The accuracy on test data was highest for the model with no correction of class im-

balance with 0.9711. The model trained with oversampling of minority and under-

sampling of majority classes had an accuracy of 0.9631 and the one with a weighted

loss function an accuracy of 0.9484. Top-3 performance was >0.98 for all models

and reached >0.99 for the best performing model. Top-5 accuracy was >0.99 for all

models (table 6.1).

See 8.4 in the supplements for examples of wrongly predicted images.

Table 6.1: Overall and mean per species accuracy of ResNet-152 with different methods to

handle class imbalance during training; none: no correction of class imbalance,

oversampling: oversampling of minority classes and undersampling of majority

classes, weighted loss: weighted loss function

Handling class imbalance Top-1 Top-3 Top-5

None 0.9711 0.9923 0.9953

Oversampling 0.9631 0.9893 0.9932

Weighted loss 0.9484 0.9844 0.9907

During training, validation loss and accuracy did not improve further after <10

epochs for all models (fig. 6.1 and 6.2).
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Figure 6.1: Validation loss during training of ResNet-152 with different methods to handle

class imbalance; none: no correction of class imbalance, oversampling: over-

sampling of minority classes and undersampling of majority classes, weighted

loss: weighted loss function

Figure 6.2: Validation accuracy during trainingof ResNet-152 with different methods to

handle class imbalance; none: no correction of class imbalance, oversam-

pling: oversampling of minority classes and undersampling of majority classes,

weighted loss: weighted loss function
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6.2 Performance by species

The mean recall over all species in the dataset was highest for the model with

oversampling with 0.9321. The model with weighted loss reached a mean recall of

0.9085 and the one without correction of class imbalance a mean recall of 0.9011.

Mean precision was highest for the model without correction for class imbalance with

0.9404. For the other models it was 0.9178 (oversampling) and 0.8698 (weighted loss)

(table 6.2). Below, only the detailed results of the two models with the highest mean

recall and precision are presented. For species with <100 images in the dataset,

mean recall is lower than for all species (0.7044 for the model without correction

of class imbalance and 0.8206 for the model with oversampling). Mean precision

for species with <100 images is higher for the model without correction of class

imbalance (0.9192) compared to the model with oversampling (0.8803). For species

with >5000 images in the datset, recall was 0.9809 and precision 0.9760 for the

model without correction of class imbalance and 0.9602 and 0.9726 respectively for

the model with oversampling.

Table 6.2: Mean recall and precision over all classes using ResNet-152 with different meth-

ods to handle class imbalance during training; none: no correction of class im-

balance, oversampling: oversampling of minority classes and undersampling of

majority classes, weighted loss: weighted loss function

Handling class imbalance Mean Recall Mean Precision

None 0.9011 0.9404

Oversampling 0.9321 0.9178

Weighted loss 0.9085 0.8698

For both models, the variance in precision and recall per species was higher for

species with few images. While some species with few images had high recall and

precision, others had low values. For the majority classes, precision and recall were

high in both models (fig. 6.3 and 6.4).
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For the model without correction for class imbalance, precision was >0.6 for all

species while recall was low for some species (6.3). The species with a recall <0.6

are Boloria aquilonaris (0.2222) Agriades orbitulus (0.2857), Parnassius phoebus

(0.4444), Polyommatus thersites (0.5238), Agriades optilete (0.5556) and Pheangaris

alcon (0.5556). There were 207 images of Polyommatus thersites in the dataset and

the other mentioned species had <100 images (see table 8.1 in the supplements).

For the model with oversampling of minority classes, all but one species had a

precision >0.6 (fig. 6.4). For Polyommatus thersites precision was 0.3721. Recall

was<0.6 for Agriades orbitulus (0.2857), Parnassius phoebus (0.5556) and Phengaris

alcon (0.5556). All of these species are represented by <100 images in the dataset

(see table 8.1 in the supplements).

The model without correction for class imbalance predicted the species of minority

classes generally less often, than they appear in the dataset while this was not the

case for the model with oversampling (fig. 6.5).

Figure 6.3: Recall and precision for individual species against number of images per species

for the model without correction of class imbalance
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Figure 6.4: Recall and precision for individual species against number of images per species

for the model with correction of class imbalance by oversampling minority

classes during training

6.3 Performance by species groups

For moth species, recall and precision was high with little variance compared to

other species groups for both models. Of the groups of butterflies, the Papilioniadae,

Nymphalini and - for the model without correction of imbalance - also the group

with Limentidinae and Apaturinae had high median values for recall and precision

with little variance. Variance in the two metrics was especially high for the groups

Hesperiidae and Lycaenidae. The genus Erebia had comparably low precision for

both models and low recall for the model without correct for class imbalance (fig.

6.6 and fig. 6.7).
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Figure 6.5: Number of images per species in the test dataset (n true) and number of times

it was predicted (n predicted) with (a, c) model trained without correction of

class imbalance and (b, d) model trained with oversampling of minority classes,

the lower plots show only the species with up to 100 images
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Figure 6.6: Precision for individual species by group; none: model trained without cor-

rection of class imbalance; oversampling: model trained with oversampling of

minority classes and undersampling of majority classes to correct for class im-

balance

6.4 Confidence threshold

For a correct prediction of 99.5% of the test images, a confidence threshold at

0.9343 would be necessary for the model without correction for class imbalance.

When only predictions with a higher confidence are accepted, 92.51% of the images

are covered. For the model with oversampling the confidence threshould is 0.9646

including 89.13% of the images (6.8). For the model with the weighted loss function,

the confidence threshold is 0.9394 at which 85.05% of the images are included.
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Figure 6.7: Recall for individual species by group; none: model trained without correction

of class imbalance; oversampling: model trained with oversampling of minority

classes and undersampling of majority classes to correct for class imbalance
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Figure 6.8: Confidence of model predictions and accuracy and coverage that are reached

when only accepting predictions above that confidence, the vertical black lines

marks the confidence threshold that is needed for an accuracy >0.995; (a) the

model trained without correction of class imbalance and (b) the model trained

with oversampling of minority classes
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7 Discussion

7.1 Model performance

The butterflies and moth species in the dataset could be classified with a high

accuracy of >0.97. The accuracy achieved in this study is higher than in other

studies on the use of convolutional neural networks for butterfly species identification

[48, 38, 10]. The dataset used here by far exceeds the size of datasets used in other

studies and offeres unique opportunities to train a convolutional neural network

on the fine-grain classification task of identifying butterfly and moth species from

images.

7.2 Comparison of approaches

All of the three compared approaches had high top-1 accuracies, with the model

with no correction for oversampling performing best. A model that is trained with-

out correction on a highly imbalanced dataset is more strongly optimized for the

majority classes [7]. Those species also appear most often in the test dataset which

represents the imbalanced distribution of the classes in the original dataset. There-

fore, a higher accuracy on the whole dataset was expected. Mean precision over all

species was also higher for that approach. When comparing the mean recall over

all species though, the model with oversampling of minority classes showed the best

performance with a recall >0.93. Differences in recall between the two models were

especially pronounced for the minority classes. Due to better representation of the

27



7 Discussion

minority classes during training, they were predicted more often by the model with

oversampling compared to the model without correction and better represented their

number of occurrences in the dataset. When minority classes are better represented

in the dataset, there is higher recall (more species that are truly in that class are also

predicted to be in it). Whereas species with fewer images still show lower perfor-

mance, oversampling of minority classes could partly overcome the negative effects

of class imbalance with only a small reduction in accuracy on the whole dataset.

7.3 Performance for individual species and groups

Precision and recall were high for species with many observations while performance

varied strongly for species with only few images even when accounting for class im-

balance by oversampling of minority classes. The generally lower performance for

species with only few images could be caused by a lack of sufficient images for learn-

ing relevant features for generalization to other images from that species [30]. The

high variance in recall and precision for species with only few images shows that the

number of images needed for correct identification strongly differs between species.

In this context, the collection of images by citizen scientists plays an important

role. How often species are photographed not only depends on how commonly they

occur, but also on morphological features such as size and wing patterns due to de-

tectability and recognizability bias. The detectability bias describes the well known

phenomenon in biodiversity monitoring that some species are detected more easily

e.g. due to their larger size, conspicuous colors or active behavior. This affects

surveys by experts in systematic monitoring schemes [24] and records made by cit-

izen scientists [3]. The detectability bias is especially important in citizen science

monitoring. Koch et al. [29] showed that in datasets collected by citizen scientists,

species that are difficult to identify by both humans and machine learning models

are less well represented. Therefore, the effect of the number of training images and

of morphological features of species are difficult to disentangle.
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Model performance differed between species groups. See figures 8.1 to 8.3 for im-

ages of some species from each group. The butterfly groups with the highest recall

and precision for both models are the Papilionidae and the Nymphalini. The Papil-

lionidae are a small family with only six species in Austria. Most of them such as

Papilio machaon (Old-World Swallowtail) or Iphiclides podalirius (sail swallowtail)

can be easily distinguished by their wing patterns. The one species in this group

with low recall is Parnassius phoebus (Small apollo) which is highly similar to Par-

nassius apollo (Mountain Apollo) but appeares less frequently in the dataset. The

Nymphalini are a tribe of the largest family of butterflies, the Nymphalidae. The

Nymphalini contain many conspicuous species that have characteristic and unique

wing patterns such as Aglais io (European peacock), Vanessa atalanta (Red Admi-

ral) or Aglais urticae (Small tortoiseshell) that make them easy to distinguish and

popular for taking pictures.

Butterfly groups with a comparably low recall and high variance in it are the Ly-

caenidae, Hesperiidae and the Erebia. The family Lycaenidae (with the subfamilies

Polyommatinae (blues), Lycaeninae (coppers) and Theclinae (hairstreaks) in Aus-

tria) contains many species that can be challenging to identify even by an expert. In

addition, many species of these group can only be distinguished by patterns on the

underside of the wing, that are not always visible in images. In the family Hesperi-

idae (skippers) especially the genus Pyrgus is challenging to identify from images.

The same is true for the genus Erebia that contains many similar species.

Due to their low number, all moth species were analyzed as one group. Only 31 of

the 162 species in the dataset are moth species, even though the majority of the

about 4000 species in the order Lepidoptera that occur in Austria [23] are moth

species and only about 210 belong to the butterflies (Papilionoidea) [21]. This im-

balance can be explained by the selection of only few, mostly day-active or otherwise

noticeable moth species for monitoring in the citizen science application ”Schmetter-

linge Österreichs”. The high precision and recall that was reached for moth species

is therefore not necessarily representative for this highly diverse group that contains
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many similar species. Some of the species in the dataset for this study have closely

related, similar species that are not in the dataset. An automated detection of all

Austrian moth species is therefore very likely a lot more challenging than for the

selected species in this study.

The coverage of butterfly species in the dataset is a lot higher than for moth species,

but still not all species are represented. This is partly caused by the complete lack

of observations for some species and also by the selection of only species with >50

images for this study. Especially for the difficult to distinguish genuses Erebia and

Pyrgus species are missing from the dataset. As for the moths, species identification

is probably more difficult for these groups when all species are included. The models

usability is limited when an identification of all species that are known to occur

in Austria is required due to the absence of some species in the training dataset.

Depending on the context, the identification of species that are very rare can be

less relevant. A targeted search for images of these species could overcome this

limitation in the dataset.

7.4 Practical application

The model trained in this study can identify butterfly species from images with high

accuracy. The level of accuracy considered sufficient depends on the application.

For educational purposes, errors in the predictions can be less problematic when

uncertainties are reported and multiple species with high probabilities are shown.

The high top-5 accuracies of >99% that is achieved with all models are especially

relevant in this context.

For use in biodiversity monitoring or research, higher accuracies may be required.

Confidence thresholding can increase accuracy by rejecting images with uncertainties

of the prediction [56, 39]. To obtain an accuracy of over 99.5% in this stury only

about 10% of predictions had to be rejected. Automated species identification of

butterflies can thus reduce human effort considerably by leaving only difficult cases
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for human identification. The assessment of precision and recall per species can

give insights into quality of prediction for applications on individual species such as

habitat suitability models.

For most images in the dataset, a butterfly is clearly visible in the center of the

image. Among the images that could not be identified, there are many on which

the butterfly can hardly be detected, either because it is relatively small in the

image, taken from an unfortunate angle or obscured by objects in the foreground.

Missindentification was also caused by important features not being visible in the

image and by images of larvae or with more than one species that were not detected

during preparation of the dataset. These cases show that guidelines on how to best

take images for users of citizen science applications could further improve accuracy

of predictions.

Based on the dataset and the methods that were used in this thesis, further studies

on automated butterfly species identification are conducted and will be submitted

for publication in scientific journals.
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Legind, J. K., Masinde, S., Miller-Rushing, A. J., Newman, G., Rosemartin,

A. and Turak, E. [2017], ‘Contribution of citizen science towards international

biodiversity monitoring’, Biological Conservation 213, 280–294. SI:Measures of

biodiversity.

URL: https://www.sciencedirect.com/science/article/pii/S0006320716303639

[10] Chang, Q., Qu, H., Wu, P. and Yi, J. [2017], Fine-grained butterfly and moth

classification using deep convolutional neural networks.

URL: https://api.semanticscholar.org/CorpusID:46604360

[11] Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S. and Miao, Y. [2021], ‘Review of

image classification algorithms based on convolutional neural networks’, Remote

Sensing 13(22), 4712.

[12] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. [2009], Ima-

genet: A large-scale hierarchical image database, in ‘2009 IEEE Conference on

Computer Vision and Pattern Recognition’, IEEE, pp. 248–255.

[13] Di Cecco, G. J., Barve, V., Belitz, M. W., Stucky, B. J., Guralnick, R. P.

and Hurlbert, A. H. [2021], ‘Observing the observers: How participants con-

33



Bibliography

tribute data to inaturalist and implications for biodiversity science’, BioScience

71(11), 1179–1188.

URL: https://doi.org/10.1093/biosci/biab093

[14] Gerlach, J., Samways, M. and Pryke, J. [2013], ‘Terrestrial invertebrates as

bioindicators: an overview of available taxonomic groups’, Journal of Insect

Conservation 17(4), 831–850.

[15] Gomez Villa, A., Salazar, A. and Vargas, F. [2017], ‘Towards automatic wild

animal monitoring: Identification of animal species in camera-trap images using

very deep convolutional neural networks’, Ecological Informatics 41, 24–32.

[16] Goodfellow, I., Bengio, Y. and Courville, A. [2016], Deep Learning, MIT Press.

http://www.deeplearningbook.org.

[17] Goodwin, M., Halvorsen, K. T., Jiao, L., Knausg̊ard, K. M., Martin,

A. H., Moyano, M., Oomen, R. A., Rasmussen, J. H., Sørdalen, T. K. and

Thorbjørnsen, S. H. [2022], ‘Unlocking the potential of deep learning for ma-

rine ecology: overview, applications, and outlook’, ICES Journal of Marine

Science 79(2), 319–336.

[18] Gugger, S., Debut, L., Wolf, T., Schmid, P., Mueller, Z., Mangrulkar, S.,

Sun, M. and Bossan, B. [2022], ‘Accelerate: Training and inference at scale

made simple, efficient and adaptable.’, https://github.com/huggingface/

accelerate.

[19] Hansen, O. L. P., Svenning, J.-C., Olsen, K., Dupont, S., Garner, B. H., Iosi-

fidis, A., Price, B. W. and Høye, T. T. [2020], ‘Species-level image classification

with convolutional neural network enables insect identification from habitus im-

ages’, Ecology and evolution 10(2), 737–747.

[20] He, K., Zhang, X., Ren, S. and Sun, J. [2015], ‘Deep residual learning for image

recognition’.

URL: https://arxiv.org/abs/1512.03385

34

http://www.deeplearningbook.org
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate


Bibliography

[21] Höttinger, H. and Pennerstorfer, J. [2005], Rote Liste der Tagschmetterlinge
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8 Supplements

The supplements contain

• Figure 8.1 to 8.3: Images of some of the species of each of the groups that

were used to assess model performance

• Figure 8.4: Random selection of wrong predictions from the model with over-

sampling.

• Figure 8.5: Random selection of original images from the dataset

• Figrue 8.6: Augmented versions of the randomly selected images shown in 8.2

• Table 8.1: List with all butterfly and moth species that were used for training

the model with the number of images and model performance on test data for

each species
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Figure 8.1: Images of some of the species of the groups moths, Hesperiidae, Papilionidae

and Pieridae
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Figure 8.2: Images of some of the species of the groups Lycaenidae, Limenitidinae and

Apturinae, Argynnini and Nymphalini
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Figure 8.3: Images of some of the species of the groups Melitaeini, Satyrinae (without

Erebia) and Erebia
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Figure 8.4: Random selection of wrong predictions from the model with oversampling.

Upper text: correct species, lower text: predicted species

44



Figure 8.5: Random selection of original images from the dataset



Figure 8.6: Augmented versions of the randomly selected images shown in 8.5



Table 8.1: LList with all butterfly and moth species that were used for training the model with the number of images and model

performance on test data for each species, n: number of images of each species (10% of the images in each class were

used for testing the models), None: model trained without correction for class imbalance, Overs.: Model trained with

oversampling of minority classes, Recall and Precision were assessed on test data

Species n Group None Recall None precision Overs. Recall Overs. Precision

Aglais io 29612 Nymphalini 0.9831 0.9841 0.9649 0.9882

Maniola jurtina 28406 Satyrinae (without Erebia) 0.9803 0.9803 0.9659 0.9821

Argynnis paphia 27625 Argynnini 0.9906 0.9796 0.9656 0.9871

Vanessa atalanta 27268 Nymphalini 0.9875 0.985 0.9736 0.9885

Polyommatus icarus 22356 Lycaenidae 0.9754 0.9672 0.9289 0.9816

Gonepteryx rhamni 19344 Pieridae 0.984 0.9779 0.971 0.9817

Aglais urticae 18432 Nymphalini 0.9821 0.9789 0.9707 0.976

Coenonympha pamphilus 17522 Satyrinae (without Erebia) 0.9874 0.9846 0.9789 0.9845

Vanessa cardui 16423 Nymphalini 0.9817 0.9853 0.9695 0.9815

Polygonia c-album 15197 Nymphalini 0.9711 0.9906 0.9474 0.9823

Araschnia levana 14029 Nymphalini 0.9743 0.982 0.9594 0.9825

Melanargia galathea 12795 Satyrinae (without Erebia) 0.9953 0.9938 0.9922 0.9937

Ochlodes sylvanus 11125 Hesperiidae 0.9847 0.9786 0.9605 0.9825



Species n Group None Recall None precision Overs. Recall Overs. Precision

Pararge aegeria 9882 Satyrinae (without Erebia) 0.9858 0.9858 0.9777 0.9817

Aphantopus hyperantus 9673 Satyrinae (without Erebia) 0.9824 0.9704 0.9762 0.9732

Macroglossum stellatarum 9132 moth 0.988 0.9678 0.9803 0.9382

Iphiclides podalirius 8865 Papilionidae 0.9853 0.9865 0.9831 0.9765

Pieris rapae 8471 Pieridae 0.9587 0.9259 0.9351 0.9274

Pieris napi 7179 Pieridae 0.9568 0.9411 0.9304 0.9265

Papilio machaon 7129 Papilionidae 0.9804 0.9915 0.9776 0.9803

Lycaena plaeas 6933 Lycaenidae 0.9784 0.9727 0.9755 0.9727

Leptidea sinapis/juvernica 6865 Pieridae 0.9753 0.9558 0.9767 0.9491

Anthocharis cardamines 6733 Pieridae 0.9822 0.9721 0.9658 0.9701

Issoria lathonia 6657 Argynnini 0.9715 0.9729 0.976 0.9615

Euclidia glyphica 6525 moth 0.9832 0.9802 0.977 0.9623

Euplagia quadripunctaria 6246 moth 0.984 0.9887 0.9856 0.9825

Lasiommata megera 6188 Satyrinae (without Erebia) 0.9774 0.9696 0.9774 0.9558

Chiasmia clathrata 6021 moth 0.9983 0.9804 0.995 0.9836

Autographa gamma 5671 moth 0.9771 0.9893 0.9718 0.9752

Pieris brassicae 5666 Pieridae 0.9118 0.9556 0.9083 0.9263

Cupido argiades 5152 Lycaenidae 0.9515 0.9423 0.9301 0.9523

Ematurga atomaria 4954 moth 0.9677 0.9856 0.9737 0.9918



Species n Group None Recall None precision Overs. Recall Overs. Precision

Brintesia circe 4709 Satyrinae (without Erebia) 0.9788 0.9767 0.9745 0.9663

Lycaena dispar 4423 Lycaenidae 0.9842 0.9864 0.9706 0.9772

Celastrina argiolus 4074 Lycaenidae 0.9607 0.9799 0.9533 0.9773

Colia croceus 4068 Pieridae 0.9951 0.9878 0.9926 0.9735

Amata phegea 3873 moth 0.9897 0.9922 0.9871 0.9795

Coenonympha glycerion 3870 Satyrinae (without Erebia) 0.9793 0.9896 0.9819 0.9769

Minois dryas 3795 Satyrinae (without Erebia) 0.9553 0.9528 0.9605 0.9148

Lysandra coridon 3374 Lycaenidae 0.9436 0.9636 0.9466 0.9327

Lycaena tityrus 3364 Lycaenidae 0.9702 0.956 0.9762 0.9398

Erynnis tages 3331 Hesperiidae 0.976 0.9909 0.97 0.9642

Coenonympha arcania 3089 Satyrinae (without Erebia) 0.9806 0.9743 0.9838 0.956

Aricia agestis 3087 Lycaenidae 0.9741 0.9406 0.9773 0.8507

Neptis rivularis 3038 Limenitidinae and Apaturinae 0.9803 0.9868 0.9704 0.9768

Fabriciana adippe 2976 Argynnini 0.9664 0.9474 0.9497 0.9218

Boloria dia 2716 Argynnini 0.9706 0.9635 0.9632 0.9493

Limenitis camilla 2664 Limenitidinae and Apaturinae 0.9586 0.9733 0.9737 0.9418

Pseudopanthera macularia 2506 moth 1 0.9921 0.996 0.9766

Lysandra bellargus 2349 Lycaenidae 0.8809 0.9628 0.9106 0.9185

Carterocephalus palaemon 2322 Hesperiidae 0.9655 0.9825 0.9698 0.9574



Species n Group None Recall None precision Overs. Recall Overs. Precision

Nymphalis antiopa 2317 Nymphalini 0.9569 0.9737 0.9526 0.9208

Erebia aethiops 2197 Erebia 0.9682 0.9467 0.9727 0.964

Cyaniris semiargus 2075 Lycaenidae 0.9087 0.8438 0.9183 0.8682

Apatura ilia 2021 Limenitidinae and Apaturinae 0.9752 0.961 0.9604 0.9238

Boloria euphrosyne 1970 Argynnini 0.9391 0.9158 0.9492 0.8947

Lasiommata maera 1940 Satyrinae (without Erebia) 0.9588 0.9394 0.9485 0.9109

Pyrgus malvae 1906 Hesperiidae 0.9529 0.9333 0.9529 0.963

Callophrys rubi 1853 Lycaenidae 0.9622 0.9889 0.973 0.9524

Carcharodus alceae 1782 Hesperiidae 0.9719 0.9558 0.9775 0.9457

Pontia edusa 1691 Pieridae 0.9822 0.9765 0.9941 0.9767

Aporia crataegi 1687 Pieridae 0.9822 0.9765 0.9822 0.9379

Cydalima perspectalis 1662 moth 1 0.9595 0.988 0.9647

Cupido minimus 1637 Lycaenidae 0.8963 0.8258 0.9146 0.8242

Plebejus argus 1603 Lycaenidae 0.9312 0.9551 0.9562 0.8844

Speyeria aglaja 1506 Argynnini 0.9205 0.9267 0.9205 0.891

Parnassius mneomsyne 1459 Papilionidae 0.9863 0.973 0.9932 0.9864

Thymelicus sylvestris 1390 Hesperiidae 0.7626 0.7681 0.7842 0.7842

Hesperia comma 1373 Hesperiidae 0.9197 0.9692 0.9343 0.9343

Hamearis lucina 1276 none 0.9766 0.9766 0.9766 0.9259



Species n Group None Recall None precision Overs. Recall Overs. Precision

Apatura iris 1229 Limenitidinae and Apaturinae 0.9593 0.9365 0.9756 0.8955

Melitaea diamina 1211 Melitaeini 0.9504 0.935 0.9421 0.9344

Tymelicus lineola 1190 Hesperiidae 0.7563 0.7377 0.8319 0.7226

Nymphalis polychloros 1177 Nymphalini 0.9322 0.9483 0.9492 0.7568

Siona lineata 1110 moth 0.982 0.982 1 0.9487

Brenthis daphne 1024 Argynnini 0.9216 0.9038 0.9608 0.9074

Antheraea yamamai 1011 moth 0.9505 0.96 0.9703 0.9703

Triodia sylvina 991 moth 1 0.99 0.9798 0.9798

Melitaea didyma 986 Melitaeini 0.9697 0.9897 0.9697 0.96

Melitaea athalia 971 Melitaeini 0.9381 0.8922 0.9588 0.8304

Hemaris fuciformis 921 moth 0.9674 0.957 0.9674 0.899

Erebia ligea 911 Erebia 0.8901 0.8901 0.956 0.8878

Diacrisia sannio 889 moth 1 0.9889 0.9888 0.967

Lycaena virgaureae 877 Lycaenidae 0.9318 0.9011 0.9545 0.8317

Callimorpha dominula 798 moth 1 1 1 0.9639

Parnassius apollo 743 Papilionidae 0.9459 0.9211 0.9595 0.8987

Hipparchia semele 726 Satyrinae (without Erebia) 0.8904 0.9559 0.9041 0.9429

Lopinga achine 682 Satyrinae (without Erebia) 0.8971 1 0.9265 0.9545

Thecla betulae 671 Lycaenidae 0.9403 0.9844 0.9552 0.9552



Species n Group None Recall None precision Overs. Recall Overs. Precision

Scolitanides orion 660 Lycaenidae 0.9848 1 0.9697 0.9697

Lycaena hippothoe 633 Lycaenidae 0.9048 0.9661 0.9206 0.9508

Cupido decolorata 629 Lycaenidae 0.8095 0.8644 0.8889 0.7

Glaucopsyche alexis 623 Lycaenidae 0.8065 0.9259 0.8548 0.8689

Brenthis ino 604 Argynnini 0.8 0.9412 0.7833 0.9592

Sytyrium spini 592 Lycaenidae 0.9661 0.9828 0.9831 0.9831

Agrius convolvuli 580 moth 0.8793 0.9444 0.9138 0.9464

Heteropterus morpheus 548 Hesperiidae 1 0.9483 1 0.8871

Neptis sappho 547 Limenitidinae and Apaturinae 0.9818 0.9818 0.9818 0.8571

Phengaris nausithous 534 Lycaenidae 0.9811 0.9811 1 0.9815

Saturnia pyri 482 moth 0.9167 0.9778 0.9792 0.94

Satyrium w-album 460 Lycaenidae 0.9783 0.9574 0.9783 0.9375

Erbia medusa 459 Erebia 0.9348 0.9149 0.9783 0.9

Sphinx pinastri 459 moth 0.9783 0.9 1 0.902

Pieris manii 456 Pieridae 0.8261 0.9048 0.9348 0.7288

Zerynthia polyxena 447 Papilionidae 0.9333 1 0.9111 1

Hipparchia alcyone 445 Satyrinae (without Erebia) 0.9333 0.875 0.9556 0.8269

Melitaea phoebe 438 Melitaeini 0.8182 0.973 0.8409 0.9737

Arctia caja 432 moth 0.9767 1 0.9767 1



Species n Group None Recall None precision Overs. Recall Overs. Precision

Boloria selene 422 Argynnini 0.8571 0.9 0.9286 0.907

Polyommatus daphnis 397 Lycaenidae 0.95 0.8837 0.95 0.8444

Phengaris teleius 396 Lycaenidae 0.875 0.8333 0.85 0.8095

Phengaris arion 393 Lycaenidae 0.8462 0.9167 0.9487 0.925

Coenonympha gardetta 383 Satyrinae (without Erebia) 0.8947 0.9444 0.8947 0.9444

Hipparchia fagi 382 Satyrinae (without Erebia) 0.8684 0.8919 0.8947 0.85

Pieris bryoniae 375 Pieridae 0.8158 0.8857 0.9211 0.7292

Lasiommata petropolitana 366 Satyrinae (without Erebia) 0.7027 0.8966 0.8649 0.8

Mimas tiliae 345 moth 0.9118 0.9688 0.9118 0.9688

Euphydrias aurinia 345 Melitaeini 0.8571 0.9375 0.8857 0.9688

Pyrgus amoricanus 313 Hesperiidae 0.7097 0.9167 0.9032 0.9655

Polyommatus dorylas 296 Lycaenidae 0.7333 0.8462 0.8667 0.8966

Boloria titania 295 Argynnini 0.8276 0.8889 0.8966 0.8667

Melitaea cinxia 265 Melitaeini 0.9615 0.8621 1 1

Deilephila elpenor 254 moth 0.92 0.9583 0.96 0.96

Erebia euryale 248 Erebia 0.64 0.8421 0.84 0.84

Boloria eunomia 243 Argynnini 0.9583 0.9583 1 1

Calliteara pudibunda 239 moth 0.9583 0.92 0.9583 0.9583

Laothoe populi 238 moth 0.75 1 0.875 0.875



Species n Group None Recall None precision Overs. Recall Overs. Precision

Sphinx ligustri 233 moth 0.913 0.7778 0.913 1

Cossus cossus 231 moth 0.8261 0.95 0.913 0.9545

Smerinthus ocellata 223 moth 0.9091 0.7407 0.8636 0.8636

Polyommatus thersites 207 Lycaenidae 0.5238 0.6875 0.7619 0.3721

Satyrium pruni 194 Lycaenidae 1 1 0.9474 0.9474

Acherontia atropos 188 moth 1 0.9048 1 0.95

Libythea celtis 183 Nymphalini 0.8889 1 0.9444 0.8947

Favonius quercus 176 moth 0.8889 1 0.9444 0.9444

Fabriciana niobe 155 Argynnini 0.8667 0.8125 0.8667 0.7647

Eumedonia eumedon 154 Lycaenidae 0.6667 1 0.8 0.8571

Satyrium acaciae 153 Lycaenidae 0.9333 1 0.9333 0.9333

Limenitis populi 150 Limenitidinae and Apaturinae 0.8667 1 0.8667 0.8667

Phalera bucephala 148 moth 0.7333 0.9167 0.8 0.9231

Spialia sertorius 147 Hesperiidae 0.6667 0.8333 0.8667 0.9286

Boloria thore 141 Argynnini 0.8571 0.9231 1 0.9333

Arethusana arethusa 139 Satyrinae (without Erebia) 0.9286 0.8125 1 0.7

Limenitis reducta 119 Limenitidinae and Apaturinae 0.8333 0.8333 0.9167 0.9167

Acronicta rumicis 105 moth 0.9 0.8182 1 0.9091

Muschampia floccifera 104 Hesperiidae 0.6 1 0.8 0.7273



Species n Group None Recall None precision Overs. Recall Overs. Precision

Lycaena helle 98 Lycaenidae 0.9 0.9 0.9 0.8182

Boloria aquilonaris 95 Argynnini 0.2222 1 0.7778 0.7778

Colias phicomone 94 Pieridae 1 0.9 1 0.9

Erebia manto 93 Erebia 0.7778 1 1 0.9

Agriades optilete 92 Lycaenidae 0.5556 0.8333 0.8889 1

Parnassius phoebus 91 Papilionidae 0.4444 0.8 0.5556 1

Phengaris alcon 91 Lycaenidae 0.5556 0.8333 0.5556 0.8333

Macrothylacia rubi 84 moth 0.875 1 0.875 0.7778

Euphydrias maturna 82 Melitaeini 0.875 1 0.875 1

Colias palaeno 79 Pieridae 0.625 1 0.875 1

Euphydryas cynthia 77 Melitaeini 0.75 0.8571 0.875 0.7778

Chazara briseis 73 Satyrinae (without Erebia) 0.7143 1 1 1

Pyrgus carthami 68 Hesperiidae 0.8571 0.75 1 1

Agriades orbitulus 67 Lycaenidae 0.2857 1 0.2857 0.6667

Erebia pronoe 58 Erebia 0.8333 0.8333 0.6667 0.8

Polyommatus damon 53 Lycaenidae 1 1 1 0.8333
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